US009268712B2

a2 United States Patent

Altman et al.

(10) Patent No.: US 9,268,712 B2
(45) Date of Patent: Feb. 23, 2016

(54) METHOD, SYSTEM AND APPARATUS FOR
REGION ACCESS CONTROL

(75) Inventors: Asher M. Altman, Bedford, MA (US);
Mark A. Schmisseur, Phoenix, AZ
(US); Robert C. Swanson, Olympia,
WA (US); Thomas M. Slaight,
Beaverton, OR (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 303 days.
(21) Appl. No.: 13/997,504
(22) PCT Filed: Sep. 30,2011

(86) PCT No.: PCT/US2011/054409

§371 (D),
(2), (4) Date: Jun. 24,2013

(87) PCT Pub. No.: 'WO02013/048487
PCT Pub. Date: Apr. 4,2013

(65) Prior Publication Data
US 2013/0305006 A1l Nov. 14,2013

(51) Imt.ClL
GO6F 12/00 (2006.01)
GO6F 12/14 (2006.01)
GO6F 3/06 (2006.01)
(Continued)
(52) US.CL
CPCcccee. GO6F 12/14 (2013.01); GO6F 3/0622

(2013.01); GOGF 3/0667 (2013.01); GO6F
3/0679 (2013.01); GO6F 21/6281 (2013.01);
GO6F 9/545 (2013.01)

(58) Field of Classification Search
CPC GOG6F 12/14; GOGF 3/0622; GOG6F 3/0667
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2004/0165609 Al 8/2004 Herbst et al.

2006/0126615 Al* 6/2006 Angtinetal. 370/389
2009/0106771 Al 4/2009 Benner et al.
(Continued)

FOREIGN PATENT DOCUMENTS

CN 1808434 7/2006
CN 101040282 9/2007
(Continued)
OTHER PUBLICATIONS

“PCT, International Search Report of the International Searching
Authority for Application No. PCT/US2011/054409”, (Jun. 1, 2012),
Whole Document.

(Continued)

Primary Examiner — Aracelis Ruiz
(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP

(57) ABSTRACT

Techniques and mechanisms for providing access to a storage
device of a computer platform. In an embodiment, an agent
executing on the platform may be registered for access to the
storage device, the agent being allocated a memory space by
a host operating system of the platform. Registration of the
agent may result in a location in the allocated memory space
being mapped to a location in the storage device. In another
embodiment, the agent may write to the location in the allo-
cated memory space to request access to the storage device,
wherein the request is independent of any system call to the
host OS which describes the requested access.

24 Claims, 7 Drawing Sheets

sending to a hosl o
de:
irfenmation e

US 9,268,712 B2

Page 2
(51) Int.ClL FOREIGN PATENT DOCUMENTS
GOGF 21/62 (2013.01) oN 101556557 10/2009
GOGE 9/54 (2006.01) P 2003263366 9/2003
(56) References Cited OTHER PUBLICATIONS

U.S. PATENT DOCUMENTS

2009/0113110 Al 4/2009 Chen et al.
2009/0327617 Al 12/2009 Furuichi et al.
2011/0138147 Al 6/2011 Knowles et al.

“PCT, International Preliminary Report on Patentability (Chapter I of
the Patent Cooperation Treaty) for International Application No.
PCT/US2011/054409”, (Apr. 10, 2014), Whole Document.

* cited by examiner

US 9,268,712 B2

Sheet 1 of 7

Feb. 23, 2016

U.S. Patent

11 sorpsul

GOT nun Buisssooid

l Old

OF L aordg [puIsy

0071 18au] 8oAB(

061
80 SO

§51 weishs sid 88800y U

THT 19he Bunuen
ofjeotjddy

O WeISAG i [eruiip

GET eoeusu B WesAS

Ge 1 uoneoyddy

GOc¢ 1 eoeds iesn

U.S. Patent Feb. 23,2016 Sheet 2 of 7 US 9,268,712 B2

N
o
L)

A
| Main Memory 230 ! , .
| | nput Device(s) 260
| Volatiie Memory 232 |« : >
I
| |
| NV Memory 234 |« ; > | Output Devics(s)
I 274
e o o |
Frocessor 220 <> Network interface
280
A
I s T T T T T - T T T T T T T T T
| Chipsset 210 |
| Y Y |
| Mernory Controller 212 [€«—>le—> /O Controller 214 |
I A I
Y
AAN Storage 240
250
_ Access Engine 245
\ 4

FIG. 2

US 9,268,712 B2

Sheet 3 of 7

Feb. 23, 2016

U.S. Patent

0ge

aoiaa(] ebeinig Ny

08E sipuey

uoibay

LM SSB008

1sanbay

09¢g
uoneonddy
Josibay

DIt
3ipueH

ucibey apInDid

2% uonesyddy

-

ve

€ Ol

gi¢
Alopang NvY

Vig
IBAUG NYY
A
oGt
Zie P LIOISSILLLIBY
INY D 23900y
suuLBlag

1T weisAg Buneisd(150H

1sanbey

2>

2
-
ap

US 9,268,712 B2

Sheet 4 of 7

Feb. 23, 2016

U.S. Patent

v "Old

91 ¥ sensny
TLT J9ALI 20188
Ti¥ sebed isyng gjeg et 08¥
0Ly SO 180H LIHTHPRIA
sfeioig
|
! G727 suibuz ssoooy
00T UOIIBLLLIOILY e
Qv sabey LoISSILLLIS S uoibey b —
Byng Birg . v Sy |
829 D3 488N Py 05 188 -
=TT T T - ooy uonewsopy | L7 0%
-1 L | oo¥ UGHBI0T [BQI00(] JBs \fv XSO oQI00g L \Qow_mogmm HE=TseTelg]
—= R o o o — e = o ~ — pd
. — — — -
Oy uonesuddy 0Ty aowme o881018 NYY

P

00y

U.S. Patent Feb. 23,2016 Sheet 5 of 7 US 9,268,712 B2

500
S @

v 510

Detecting a wrile 1o a first location
caused by an application
performing a write to a second
location in a memary space
allocated to the application

v 52

Performing an information
exchange with the memaory space,
wherein the exchange is
independent of the application
sending to a host operating system
any system call describing the first
information exchange

End

FIG. 5

U.S. Patent Feb. 23,2016 Sheet 6 of 7 US 9,268,712 B2

600
S &

v 810

Performing a write 1o a first location in an
allocated memory space 1o request a first
information exchange, wherein the write fo the
first location causes a write o a second
focation of an OSD

>

<
lm
]
L]

Based on the write to the second focation,
performing the first information exchange with
the OSD, wherein the first information
exchange is independent of sending to a host
0O8S any system call describing the first
information exchange

End

FIG. 6

U.S. Patent

HOSY INTERFACE

7t N,

US 9,268,712 B2

Feb. 23, 2016 Sheet 7 of 7
SOLID STATE DISK 700
SOLID STATE RON-VOLATILE
DIsSK MEMORY
CONTROLLER ARRAY
702 704

FIG. 7

US 9,268,712 B2

1

METHOD, SYSTEM AND APPARATUS FOR
REGION ACCESS CONTROL

CLAIM OF PRIORITY

This application is a U.S. National Phase application under
35 US.C. §371 of International Application No. PCT/
US2011/054409, filed Sep. 30, 2011, entitled “METHOD,
SYSTEM AND APPARATUS FOR REGION ACCESS
CONTROL,” the entire contents of which are incorporated
herein by reference.

BACKGROUND

1. Technical Field

Embodiments discussed herein generally relate to tech-
niques for accessing a storage device of a computer platform.
More particularly, certain embodiments relate to accessing a
storage device of a platform independent of a call to a host
operating system of the platform to request such access.

2. Background Art

In a conventional computer platform, access control
mechanisms are enforced by native file management of a host
operating system (OS) on the platform. In a typical example,
the host OS may receive a request from an agent of the
platform to access some storage medium of the platform. In
response to such a request, the host OS will refer to its file
management system to determine, for example, whether an
access permission indicates that the requested access is to be
allowed (or denied). If an access permission is identified as
allowing the requested access, the host OS will implement a
driver process to access the storage device on behalf of the
requesting application.

With continued advancement in various computer tech-
nologies (e.g. system management, virtualization, cloud net-
working, etc.) comes increasingly varied and/or complex
relationships between a host OS of a computer platform and
one or more agents on (or communicating with) that platform.
For example, as computer platforms are asked to support
increasingly complex security management operations, basic
input/output system (BIOS) provisioning, cloud computing,
virtualization and/or the like, such platforms face increasing
performance overhead under increasingly time-sensitive per-
formance constraints. For certain types of access to a platform
storage device, the need to enforce access control mecha-
nisms via the host OS has, to date, been considered an inher-
ent part of such performance overhead.

BRIEF DESCRIPTION OF THE DRAWINGS

The various embodiments of the present invention are illus-
trated by way of example, and not by way of limitation, in the
figures of the accompanying drawings and in which:

FIG. 1 is a block diagram illustrating select elements of a
computer system for accessing a storage device according to
an embodiment.

FIG. 2 is a block diagram illustrating select elements of a
computer platform for accessing a storage device according
to an embodiment.

FIG. 3 is a sequence diagram illustrating select elements of
a communication exchange for providing access to a storage
device according to an embodiment.

FIG. 4 is a block diagram illustrating select elements of a
computer platform for accessing a storage device according
to an embodiment.

15

35

40

45

50

55

2

FIG. 5 is a flow diagram illustrating select elements of a
method for providing access to a storage device according to
an embodiment.

FIG. 6 is a flow diagram illustrating select elements of a
method for accessing a storage device according to an
embodiment.

FIG. 7 is a block diagram illustrating select elements of a
solid state disk device according to an embodiment.

DETAILED DESCRIPTION

Embodiments discussed herein variously provide access
control mechanisms for an agent of a computer platform to
access a storage device in the platform. Certain embodiments,
for example, include techniques for an application or other
agent to perform an access which is independent of a system
call to the host operating system’s native file management
system. Such access control techniques may be used, for
example, to access a type of Object-based Storage Device
(OSD) of the platform. Storage media of the OSD may, for
example, be represented in the platform as one or more
regions (objects) which, for example, may be identified and
accessed using respective region identifiers. To avoid obscur-
ing features of various embodiments, the terms “application
optimized” and “application adaptive” are used as a short-
hand herein to refer to mechanisms which exhibit, implement
and/or exploit the feature of an application (or other agent) of
a platform accessing a storage media independent a call to a
native file management system of a host OS to request such
access.

Certain embodiments enforce access control for applica-
tion optimized operations at an application and/or region
level of granularity. Certain embodiments additionally or
alternatively provide access control for storage regions which
are invisible to the host OS—e.g. where a region of an OSD is
only visible to a management agent of the computer platform
which operates independent of the host OS. For example,
certain embodiments provide access control for out-of-band
provisioning of information, for reduced virtual machine
monitor (VMM) overhead communication and/or the like.
Such access control may, for example, be implemented for
access by an out-of-band management agent managing a
targeted virtualized and/or cloud (“soft”) server system.
Alternatively or in addition, trusted in-band storage may be
provided—e.g. if a BIOS system management mode (SMM)
handler of the platform needs to store or read secure informa-
tion (e.g. code and/or data), certain embodiments provide an
access control mechanism specific to such types of access.

In an embodiment, access control functionality may be
implemented at least in part by mechanisms which are vari-
ously distributed through the platform—e.g. by respective
components in the host OS kernel space, in a memory space
allocated to an application and/or in the OSD storage device
itself.

FIG. 1 illustrates select elements of a computer system 100
for accessing a storage medium according to an embodiment.
Computer system 100 may include, for example, a desktop
computer, a laptop computer, a handheld or other portable
computer such as a tablet, a personal digital assistant (PDA),
a smart phone, a messaging device, a digital music player, a
digital camera, or other such system capable of processing,
storing, transmitting and/or receiving information.

In an embodiment, computer system 100 includes hard-
ware comprising a processing unit 105 and an object-based
storage device 110 (or OSD) which are directly or indirectly
coupled to one another via some hardware interface 115.
Processing unit 105 may include any of a variety of combi-

US 9,268,712 B2

3

nations of one or more single core and/or multi-core proces-
sors to execute a host operating system (OS) of computer
system 100.

Interface 115 may include any of a variety of combinations
of one or more component circuit elements to directly or
indirectly connect processing unit 105 and OSD 110 to one
another. By way of illustration and not limitation, interface
115 may include one or more busses such as an address bus,
data bus and/or control bus. Alternatively or in addition, inter-
face 115 may include one or more control signal lines—e.g. to
provide for control by an out-of-band management agent (not
shown), where “out-of-band” refers to an agent’s operating
independent of (for example, in parallel with or in respective
alternating processor modes with) a host OS of computer
system 100. Alternatively of in addition, interface 115 may
include one or more chipset components including, but not
limited to, an I/O controller hub, a memory controller hub,
and/or the like. Certain embodiments are not limited with
respect to the particular interface elements coupling process-
ing unit 105 and OSD 110.

By way of illustration and not limitation, access to OSD
110 by processing unit 105 may include interface 115 imple-
menting data and/or command communications in accor-
dance with, for example, one or more of a Small Computer
Systems Interface (SCSI) protocol, a SCSI over Internet Pro-
tocol (iISCSI), a Serial Attached SCSI (SAS) protocol, a Uni-
versal Serial Bus (USB) protocol, a Serial Advanced Tech-
nology Attachment (S-ATA) protocol and/or the like.

In accordance with an embodiment, where interface 115
implements such communications in accordance with SCSI
protocol, the SCSI protocol may comply and/or be compat-
ible with the protocol described in American National Stan-
dards Institute (ANSI) Small Computer Systems Interface-2
(SCSI-2) ANSVInterNational Committee for Information
Technology Standards (INCITS) 131-1994 Specification.
Where interface 115 implements such communications in
accordance with iSCSI protocol, the iSCSI protocol may
comply and/or be compatible with the protocol described in
“Internet Small Computer Systems Interface (iISCSI)” Net-
work Working Group, Request for Comments: 3720, RFC-
Proposed Standard (IETF Stream) published April 2004 by
the Internet Engineering Task Force, Internet Engineering
Task Force Secretariat c/o Corporation for National Research
Initiatives, 1895 Preston White Drive, Suite 100, Reston, Va.
20191, United States of America. Where interface 115 imple-
ments such communications in accordance with SAS proto-
col, the SAS protocol may comply and/or be compatible with
the protocol described in ANSI Standard “Information Tech-
nology—Serial Attached SCSI (SAS-2), ANSI/INCITS 457-
2010 Specification. Where interface 115 implements such
communications in accordance with the Universal Serial Bus
(USB) Attached SCSI (UAS) protocol, the UAS protocol may
comply and/or be compatible with the protocol described in
Information Technology—USB Attached SCSI (UAS) T10
Working document T10/2095-D Revision 4 Mar. 9, 2010.
Where interface 115 implements such communications in
accordance with S-ATA protocol, the S-ATA protocol may
comply and/or be compatible with the protocol described in
Serial ATA Revision 3.0 Specification, published on Jun. 29,
2009. Of course, alternatively or additionally, interface 115
may implement such communications via one or more other
and/or additional protocols without departing from this
embodiment.

OSD 110 may include a storage medium (not shown) and
logic to determine an access permission for an agent of com-
puter system 100 which requests access to such a storage
medium. As used herein, “storage” may mean one or more

5

10

15

20

25

30

35

40

45

55

60

65

4

apparatus and/or one or more portions thereof into, and/or
from which, data may be stored and/or retrieved, respectively.
Also as used in herein, the terms “mass storage” and “mass
storage device” may be used interchangeably to mean storage
capable of non-volatile storage of data. Storage may comprise
respective mass storage that may comprise respective semi-
conductor, electromechanical, magnetic, and/or optical stor-
age and/or mass storage, such as, for example, respective
flash, magnetic disk, and/or optical disk storage and/or mass
storage. Storage may be, for example, a hard disk drive, solid
state drive, hybrid disk drive, Digital Video Disk (DVD)
drive, Compact Disk (CD) drive, Redundant Array of Inde-
pendent Disks (RAID), tape drive or other storage device. As
discussed herein, one or more regions of the storage medium
in OSD 110 may be variously represented in computer system
100 as regions (objects)—e.g. which are of definable (vari-
able) length. Some functionality of OSD 110 may be accord-
ing to conventional object-based storage techniques. By way
of illustration and not limitation, OSD 110 may provide or
otherwise support certain storage mechanisms such as those
set forth in the “Object-based Storage Device Commands-2
(OSD-2)” standard from the T10 committee of the Interna-
tional Committee for Information Technology Standards (IN-
CITS), January, 2009. Certain embodiments variously pro-
vide additional mechanisms which extend or otherwise
modify conventional object-based storage techniques to pro-
vide an agent with access to OSD 110 which is independent of
asystem call to the host OS of computer system 100 to request
or otherwise describe such access.

In an embodiment, processing unit 105 may execute a host
OS which, in turn, supports one or more applications also
executing with processing unit 105. To illustrate certain fea-
tures of various embodiments, such execution by processing
unit 105 is supported in computer system 100 by an illustra-
tive kernel space 130 (for the host OS) in main memory and
by an illustrative user space 120 in main memory. OSD 110
may be distinguished, for example, from the main memory
(not shown) which underlies user space 120. Accordingly,
interface 115 may be distinguished, for example, from a
memory bus (not shown) by which processing unit 105
accesses from main memory state information representing
state for application 125. User space 120 may include at least
one component space allocated for an application 125, which
may request access to OSD 110. Application 125 may, for
example, execute in a limited privilege (e.g. Ring 3) protec-
tion domain established by the host OS. In an embodiment,
application 125 is a process of a virtual machine running on
computer system 100—e.g. where kernel 130 is for an execu-
tion environment of a virtual machine monitor (VMM) sup-
porting the virtual machine. It is understood that any of a
variety of additional or alternative applications or other
agents may be supported by the host OS represented by kernel
space 130.

Application 125 may make one or more calls to kernel
space 130—e.g. to variously access one or more resources of
computer system 100. In an embodiment, application 125
may signal a system call interface 135 ofkernel space 130 that
it wants to avail of a some conventional file management
functionality of the host OS—e.g. for the host OS to perform
on behalf of application 125 a read, write, delete, etc. access
to some storage device of computer system 100. In response
to such a request, a host OS process may access a file system
155 ofkernel space 130 to determine whether and/or how the
access is to take place. For example, the host OS may identify
a given storage device (e.g a particular hard disk drive, solid
state drive and/or the like), file, folder, etc. from a file system
155 ofkernel space 130 to determine whether application 125

US 9,268,712 B2

5

is associated with an access permission for the requested
access to such drive, file, folder, etc. If such access permission
is determined to be associated with application 125, a device
driver 160 of kernel space 130 may access a storage device of
computer system 100 (e.g. some device other than OSD 110)
on behalf of application 125.

In certain embodiments, kernel space 130 may include, or
otherwise have access to, additional application optimized
access control functionality which, compared to the access
discussed above, supports relatively more direct access by
application 125 to OSD 110. Some of such application opti-
mized access control functionality is represented in kernel
space 130 by an illustrative application access naming layer
145 and an illustrative OSD Driver 150. OSD 110 may be
considered application adaptive non-volatile (AAN) memory
in certain embodiments, at least to the extent that application
adaptive access control functionality provides for access to
OSD 110 which is independent of a call to the host OS of
computer system 100.

Application access naming layer 145 (alternately referred
to herein as an AAN naming layer, or “ANL”) may include a
file system which provides a file-like abstraction for one or
more regions of OSD 110. Application access naming layer
145 may, for example, give a local user, a system administra-
tor, an operating system, an application or other agent an
ability to provide or otherwise determine user-friendly names
for storage regions in OSD 110. Application access naming
layer 145 may be mounted into the host OS’s virtual file
system 140 from any of a variety of types of storage media of
computer system 100.

As discussed herein, application access naming layer 145
may support application-specific and/or region-specific
access control—e.g. providing mechanisms to associate one
or more of applications, users, regions etc. with Portable
Operating System Interface for Unix (POSIX) style access
permissions (e.g. read, write, execute, etc.) and to maintain
those associations in a non-volatile directory structure. In an
embodiment, one or more regions of the OSD 110 are repre-
sented in the application access naming layer 145 as respec-
tive storage devices (e.g one or more hard disk drives and/or
solid state drives), folder names, file names and/or the like,
each associated with respective access permissions (e.g.
Read, Write, Delete, Execute and/or the like). The application
access naming layer 145 may implement a POSIX-style
access control scheme that specifies distinct permissions for
regions—e.g. on a per-application and/or other per-agent
basis—using conventional (e.g. Owner, Group or other) cat-
egories. Application 125 may, in an embodiment, query appli-
cation access naming layer 145 to determine which regions
are contained on OSD 110, to view permissions to access such
regions, to modify a permission for a region over which it has
control, and/or the like.

In an embodiment, the one or more regions of OSD 110
represented in application access naming layer 145 are only a
subset of all regions in OSD 110. Other regions of OSD 110
may, for example, be undetectable (referred to herein as invis-
ible) to the host OS due to some configuration in computer
system 100.

By way of illustration and not limitation, computer system
100 may include one or more out-of-band (OOB) system
management agents capable of managing which information
regarding regions of OSD 110 is to be provided to kernel
space 130. Such a management agent may configure OSD
110—and/or other elements of computer system 100—to
prevent information describing a particular region or regions
of OSD 110 from being mounted into application access
naming layer 145.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

One such management agent may, for example, execute on
a dedicated processor (not shown) separate from the proces-
sor of processing unit 105 which executes processes of the
host OS. Alternatively or in addition, such a management
agent may execute during a system management mode of
processing unit 105—e.g. where processing unit 105 alter-
nates between the system management mode and a mode for
executing processes of the host OS.

Application access naming layer 145 may also be respon-
sible for communicating access policies with OSD 110—e.g.
via OSD driver 150—in order for OSD 110 to associate
application 125 with an access permission. Such association
may later be referenced by OSD 110 for granting a subse-
quent access request of application 125. With access control
mechanisms provided by application access naming layer
145, application 125 may bypass file system 155 and access
OSD 110 independent of having to specify such access in a
request to system call interface 135. Different applications of
the computer system 100 may thus access the OSD 110 in a
safe manner—e.g. each application access according to a
respective application-specific permission which is agreed
between or otherwise determined by kernel space 130 and
access control logic of OSD 110 during a registration phase
prior to such access.

FIG. 2 illustrates select elements of a computer platform
200 for accessing a storage medium according to an embodi-
ment. Computer platform 200 may include hardware to pro-
vide some or all of the features of computer system 100, for
example.

Computer platform 200 may be a platform of a desktop
computer, a laptop computer, a handheld computer, a tablet
computer, a PDA, a server, an Internet appliance, and/or any
other type of computing device. In an embodiment, computer
platform 200 includes a chipset 210 having, for example, a
memory controller 212 and an input/output (I/O) controller
214. Chipset 210 may provide memory and I/O management
functions, as well as a plurality of general purpose and/or
special purpose registers, timers, etc. that are accessible or
used by a processor 220 of computer platform 200. Processor
220 may be implemented using one or more single chip
and/or multi-chip processing components. For example, pro-
cessor 220 may be implemented using one or more ofthe Intel
Pentium® technology, the Intel Itanium® technology, the
Intel Centrino® technology, the Intel Xeon® technology,
and/or the Intel XScale® technology. Additionally or alter-
natively, other processing technology may be used to imple-
ment processor 220.

Memory controller 212 may perform functions that enable
processor 220 to access and communicate via an interconnect
250 with a main memory 230 having, for example, a volatile
memory 232 and a non-volatile memory 234. Volatile
memory 232 may include any of a variety of combinations of
one or more random access memory devices including, but
not limited to, Synchronous Dynamic Random Access
Memory (SDRAM), Dynamic Random Access Memory
(DRAM), RAMBUS Dynamic Random Access Memory
(RDRAM), and/or the like. Non-volatile memory 234 may
include, for example, an array of non-volatile memory
devices (e.g., chips) comprising non-volatile memory cells.
In an embodiment, non-volatile memory 234 includes, for
example, one or more of NAND flash memory, NOR flash
memory, magneto-resistive random access memory, nanow-
ire, phase-change memory and/or the like. Non-volatile
memory 234 may comprise single-level or multi-level
memory cells, or a combination thereof. For embodiments in
which non-volatile memory 234 comprise phase-change
memory, the phase-change memory cells may comprise ver-

US 9,268,712 B2

7

tically integrated memory cells in which a phase-change
memory element is layered with an Ovonic Threshold Switch
(OTS) in a cross-point. Though not illustrated, non-volatile
memory 234 may be arranged in accordance with conven-
tional memory devices by including, for example, a plurality
of addressable memory banks, each including a plurality of
memory cells arranged in rows and columns, forming word-
lines and bitlines, respectively. The memory banks may con-
tain addressable blocks (or sectors) of memory cells.

Interconnect 250 may include any of a variety of combi-
nations of one or more component signal lines to variously
interconnect components of computer platform 200 with one
another. By way of illustration and not limitation, intercon-
nect 250 may include one or more busses such as an address
bus, data bus and/or control bus. Alternatively or in addition,
interconnect 250 may include one or more control signal
lines—e.g. to provide out-of-band control—e.g. by a security
processor, a system management mode of a host processor, a
remote boot agent and/or the like—which is independent of
(forexample, in parallel with) a host OS running on processor
220. Alternatively or in addition, interconnect 250 may
include one or more of a universal serial bus (USB) interface,
a third generation input/output interface (3GIO) interface, a
PCI or PCI Express bus and/or any other suitable type of
component interconnect circuitry.

One or more input devices 260 of computer platform 200
may be connected to interconnect 250—e.g. via [/O control-
ler 214. Input device(s) 260 may permit a user to enter data
and commands into processor 220. For example, input
device(s) 260 may include one or more of a keyboard, a
mouse, a touch-sensitive display, a track pad, a track ball, a
voice recognition system and/or the like. Alternatively or in
addition, one or more output devices 270 of computer plat-
form 200 may be connected to interconnect 250—e.g. via [/O
controller 214. For example, output device(s) 270 may
include one or more of a light emitting display (LED), a liquid
crystal display (LCD), a cathode ray tube (CRT) display, a
printer, a speaker and/or the like.

In an embodiment, computer platform 200 includes a net-
work interface 280—e.g. a modem and/or network interface
card—to facilitate wired and/or wireless data exchanges with
one or more networks (not shown). By way of illustration and
not limitation, network interface 280 may include an anten-
nae and/or circuit logic to communicate via any of a variety of
types of network connections including, but not limited to, an
Ethernet connection, a digital subscriber line (DSL), a tele-
phone line, a cellular telephone system, a coaxial cable, a
wireless router, etc.

1/O controller 214 may, for example, perform functions
that enable processor 220 to communicate with input
device(s) 260, output device(s) 270, network interface 280
and/or the like. Although certain embodiments are not limited
in this regard, /O controller 214 may additionally or alterna-
tively provide processor 220 with access to an AAN storage
240 of computer platform 200. AAN storage 240 may, for
example, include some or all of the features of OSD 110.
AAN storage 240 may include storage medium (not shown)
for storing data to be read and/or written by one or more
agents of computer platform 200. In an embodiment, AAN
storage 240 includes an access engine 245—e.g. a state
machine or other hardware logic—to determine an access
permission for an application or other agent requesting appli-
cation optimized access to the storage medium. Based on
determining such access permission, access engine 245 may,
for example, generate one or more signals which directly or
indirectly determine whether or how data is to be read from
and/or written to a storage media of AAN storage device 240.

25

40

45

8

By way of illustration and not limitation, access engine 245
may generate one or more signals to selectively permit and/or
prohibit the gating of a data bus and/or an address bus of AAN
storage device 240. Any of a variety of additional or alterna-
tive mechanisms may be implemented by access engine 245
to selectively allow and/or prohibit such reads and/or writes.

Computer platform 200 may include a system management
agent capable of managing which information regarding
regions of AAN storage 240 is to be provided to a host OS
running on processor 220. One such management agent may,
for example, execute on a dedicated processor (not shown)
which is separate from processor 220. Alternatively or in
addition, such a management agent may execute on processor
220 during a system management mode—e.g. where proces-
sor 220 alternates between the system management mode and
a mode for executing processes of the host OS.

In an embodiment, such a management agent may store in
AAN storage 240 configuration information to describe
which regions are to be made visible (or invisible) to the host
OS. Based on such configuration, AAN storage 240 may
selectively prevent information describing one or more invis-
ible regions from being loaded into an AAN naming layer of
a kernel space for the host OS.

Access to invisible regions of AAN storage 240 may be
limited according to, or otherwise predicated upon, AAN
storage 240 detecting an indication that such access is not for
the host OS. For example, AAN storage 240 may exchange
information describing such invisible regions on a dedicated
management communication channel which is isolated from
the host OS. Alternatively or in addition, AAN storage 240
may exchange information describing such invisible regions
in response to detecting that processor 220 is not currently
operating in a mode for executing processes of the host OS.
For example, AAN storage 240 may detect some signal—e.g.
a provided via a system management interrupt virtual legacy
wire (SMI-VLW)—which indicates that processor 220 is
operating in a system management mode. Based on detecting
such a signal, AAN storage 240 may accept an associated
request to access information corresponding to a region
which is invisible to the host OS.

Computer platform 200 is illustrative of one architecture
for implementing application optimized access according to
an embodiment. One or ordinary skill in the computing arts
would understand from the discussion herein that such archi-
tecture may include any of a variety of additional or alterna-
tive components—and/or any of a variety of additional or
alternative configurations thereof—to implement techniques
described herein.

FIG. 3 illustrates select elements of a communication
exchange 300 for providing access to a storage device accord-
ing to an embodiment. Communication exchange 300 may
take place, for example, among components of a platform
including some or all of the features of computer platform
200.

In an embodiment, communication exchange 300 includes
various messages exchanged among a host OS 310 of a com-
puter platform, an application 320 of the platform which is
supported by host OS 310 and an AAN storage device 330 of
the platform. Application 320 and AAN storage device 330
may, for example, include some or all of the features of
application 125 and OSD 110, respectively. Access control
functionality for application optimized accesses to AAN stor-
age device 330 may be implemented at least in part by a
combination of mechanisms which are distributed throughout
the platform—e.g. by an AAN Naming Layer (ANL) 312 and
an AAN Driver 314 of host OS 310, by information and/or

US 9,268,712 B2

9

locations in the memory space for application 320 and/or by
other access control mechanisms of the AAN storage device
330.

Certain embodiments include a mechanism to identify and
authenticate a user and/or application making an access
request to AAN storage device 330. Such mechanisms may
include, for example, a protection domain identifier (PDID)
to specify which application is making a particular access
request. A PDID, or information corresponding thereto, may
be included in, or otherwise available to, a controller residing
on AAN storage device 330—e.g. wherein the PDID is later
accessed as reference information for identifying the request-
ing application.

In an embodiment, the PDID of application 320 may not be
easily spoofed by another application, malicious agent, etc.
since ANL 312 binds the PDID to the memory space of
application 320 and guards the PDID with memory protec-
tions of host OS 310. Therefore, spoofing such an applica-
tion’s PDID may require breaking the native memory protec-
tions afforded by the host OS 310. In the illustrative case of
computer system 100, such memory protections may, for
example, be afforded by a VMM (not shown) running in user
space 120 of computer system 100—e.g. where application
125 is running in a virtual machine (not shown) which is
managed by such a VMM.

An application which is to perform application optimized
access of AAN storage device 330 may first go thrua memory
registration process with host OS 310. The registration pro-
cess may include application 320, host OS 310 and AAN
storage device 330 variously agreeing or otherwise determin-
ing one or more locations, identifiers or other information for
later use in implementing an application optimized access of
AAN storage device 330 by application 320.

For example, host OS 310 and application 320 may agree
or otherwise determine a first location (e.g. data buffer, /O
page, queue and/or the like) in the memory space allocated to
application 320, where host OS 310 is to perform a configu-
ration—e.g. a memory mapping—to correspond such first
location to a second location (e.g. data buffer, I/O page, queue
and/or the like) in AAN storage device 330. Based on such
configuration, a subsequent write to the first location by appli-
cation 320 may cause an automatic write to the second loca-
tion in AAN storage device 330. As a shorthand, this causal
relation of a write to one location and a write to another
location is referred to herein as a doorbell feature. The term
“doorbell” refers to the fact that, for example, AAN storage
device 330 may detect from the resulting write to the second
location, that a causal write has been performed to the corre-
sponding first location by application 320. AAN storage
device 330 may thereby identify—e.g. independent of a sys-
tem call to host OS 310—that application 320 is seeking some
access.

Alternatively or in addition, the registration process may
include host OS 310 and application 320 agreeing or other-
wise determining one or more of an identifier of a region of
AAN storage device 330 which application 320 may later
seek to access, a PDID or other identifier with which appli-
cation 320 may identify itself, a permission which has been
given (or is to be given) to application 320 for a particular
access to the particular region of memory in AAN storage
device 330, and/or the like.

The registration process may further include host OS 310
and AAN storage device 330 agreeing on one or more of the
second location which host OS 310 is to configure for corre-
spondence with the first location of application 320, the PDID
or other identifier of application, 320, the identifier of the
region of AAN storage device 330 which application 320 may

10

15

20

25

30

35

40

45

50

55

60

65

10

later seek to access, the access permission which has been
given (or is to be given) to application 320 for such region,
and/or the like.

By way of illustration and not limitation, a set of one or
more locations of the memory space allocated for application
320—e.g. one or more /O pages—may be registered for
association with (e.g. mapping to) a PDID which AAN device
320 later uses for the purpose of identifying application 320
and a corresponding access permission. The PDID may be
used by AAN storage device 330 to perform an access per-
mission check when application 320 makes an [/O request for
an application optimized access—e.g. to read and/or write to
a specified region of AAN storage device 330.

Prior to application 320 accessing a region of AAN device
330, host OS 310 may register one or more 1/O locations of
application 320 and may determine a PDID for such access—
e.g. in response to a request from application 320. In an
embodiment, ANL 312 may check whether application 320 is
to be provided rights to access the region of the AAN device.
If ANL 312 determines that application 320 is to be allowed
an access permission, ANL 312 may propagate access infor-
mation—e.g. a PDID (identifying application 320), a region
ID for a region of AAN device 330 and/or an identifier of the
allowed access type (Read or Write)—to AAN device 330 via
AAN driver 314. AAN storage device 330 may maintain such
access control information in a region permission structure in
AAN device 330. Such region permission information may,
for example, be kept in a table or other data structure that is
populated with a new entry each time a request to create or
access an object of AAN storage device 330 is made by the
AAN driver 314.

Application 320 may send to host OS 310 a message 340
which explicitly or implicitly requests a region handle (RTag)
for a region of AAN storage device 330. Alternatively, regis-
tration of application 320 may be initiated by some other
agent of the platform. In response to the message 340, the host
OS 310 may determine, at 350, an access permission for
controlling application-optimized access of the region by
application 320. If, for example, message 340 is for applica-
tion 320 to request creation of the region for the first time,
ANL 312 may register the region and one or more access
permissions for the region within the virtual file system of
host OS 310—e.g. in an AAN directory 316 which describes
regions of AAN storage device 330. AAN directory 316 may
be included in or otherwise accessible to ANL 312, in an
embodiment. If message 340 is for application 320 to request
access to a previously created region of AAN storage device
330, ANL 312 may query native policy management func-
tionality (not shown) of host OS 310 for an access permission
for the region. The policy manager may respond with a per-
mission that is configured for the region.

Having determined access permissions at 350, ANL 312
may signal AAN driver 314 to register a region access control
policy with AAN device 330. By way of illustration and not
limitation, AAN driver 314 may register the application, at
360—e.g. including communicating to, or otherwise agree-
ing with, AAN storage device 330 a PDID and/or a location to
associate with application 320. Alternatively or in addition,
AAN device 330 may allocate, and provide via AAN driver
314, a region handle (RTag) for application 320 to use in
application-optimized accesses to the region. ANL 312 may,
at 370, return to application 320 the RTag which was deter-
mined with AAN storage device 330.

With the region identifier RTag, application 320 may, at
some later point in time, place a work request 380 into a
registered location of its memory space to perform applica-
tion-optimized /O with the desired region of AAN device

US 9,268,712 B2

11

330. A controller in the AAN device 330—e.g. having some
or all of the features of access engine 245—may validate
access to the region by comparing the access type in work
request 380 with the pre-registered information for that
PDID—e.g. allowing or denying access based on the check.

FIG. 7 is a block diagram of an embodiment of a solid state
disk 700. Solid state disks (also “solid state drives”) use
semiconductor memories, also referred to as solid state
memories, as a storage medium. Semiconductor memories
are comparatively more rugged than hard drives and offer the
advantage of being much less sensitive to vibration, dust,
humidity, and sudden changes in velocity. Semiconductor
memories also tend to require less power than a typical hard
drive with similar storage capacity.

Solid state disk 700 includes a solid state disk controller
702 to control nonvolatile memory array 704. Solid state disk
700 communicates with a host controller via a host interface
706. The solid state disk controller 702 controls reading,
writing and erasing of the nonvolatile memory array 704.
Solid state disk 700 may includes some or all of the features
of AAN storage 240—e.g. where access engine 245 is incor-
porated into, or otherwise coupled to control, solid state disk
controller 702.

FIG. 4 illustrates select elements a computer platform 400
including data structures to provide access to a storage device
according to an embodiment. Computer platform 400 may,
for example, include some or all of the features of computer
platform 200.

Computer platform 400 may include a host OS 410 execut-
ing on a processing unit (not shown) and including various
structures in main memory—e.g. represented by an illustra-
tive device driver 412, data buffer pages 414 and queues 416.
Device driver 412 may provide functionality for host OS 410
to control one or more components of computer platform 400,
and data buffer pages 414 and queues 416 may store various
state information of host OS 410. By way of illustration and
not limitation, device driver 412 may include some or all of
the functionality of AAN driver 314, whereas data buffer
pages 414 and queues 416 may variously store current and/or
pending process state, reference data, etc. of an ANL.

Furthermore, computer platform 400 may include an AAN
storage device 430 such as a hard disk drive, solid state drive,
etc., the AAN storage device 430 having a storage medium
480—e.g. including NAND flash memory media, NOR flash
memory media, magneto-resistive random access memory
media, nanowire media, or phase-change memory media and/
or the like—which is available for application-optimized
access. In an embodiment, AAN storage device 430 includes
anaccess engine 470—i.e. any of a variety of combinations of
hardware, firmware and/or executing software—to detect a
request for an application-optimized access and to evaluate
whether to allow or deny such application-optimized access.
AAN storage device 430 may further include various regis-
tration information to be referenced by access engine 470 in
determining whether to allow a requested application-opti-
mized access.

Computer platform 400 may further include an application
420 executing on the processing unit and including various
structures in main memory—e.g. represented by illustrative
data buffer pages 428, user send queue 424, user complete
queue 426 and/or the like. To communicate with AAN storage
device 430, application 420 may allocate and register one or
more of its locations (e.g. a user doorbell location 422, one or
more data buffer pages 428, user SQ 424 and/or the like) in
main memory, thru an AAN driver ot host OS 410 (e.g. device
driver 412), with AAN device 430. Registration may include
AAN device 430 and the AAN driver ofhost OS 410 agreeing

10

15

20

25

30

35

40

45

50

55

60

65

12

to a PDID which both the kernel of host OS 410 and AAN
device 430 associate with the addresses of the application
memory space which were registered as part of the registra-
tion process. The AAN device 430, or the AAN driver of host
OS 410, may assign a doorbell address and map that address
into the application’s memory map. In an embodiment, the
PDID of application 420 is the index of the doorbell address.

Inan embodiment, the host OS 410 may perform a memory
map to map a location 445 of a doorbell repository 440 in
AAN device 430 directly to user doorbell location 422 of
application 420. Such a memory map will may provide means
for the application to perform a memory map 1/O write to the
location 445 to interrupt AAN storage device 430.

For example, application 420 may indirectly write to loca-
tion 445 an access request message which includes or other-
wise indicates a PDID for application 420, an RTag for the
region to be accessed, and/or the like.

In response to detecting the write to location 445, access
engine 470 may use information in the request message to
access doorbell context information 450, previously gener-
ated for registration of application 420 with AAN storage
device 430.

Doorbell context information 450 may, for example, con-
firm or otherwise describe an association of location 445 with
the PDID or other identifier of application 420, the location
one or more regions (e.g. user SQ 424, data buffer pages 428
and/or the like) of the memory space of application 420 which
are a target or source of a requested data exchange, and/or the
like. Based on doorbell context information 450, access
engine 470 may authenticate the application making the
request and/or identify to where and/or from where data is to
be exchanged.

In an embodiment, access engine 470 may further access
region permission information 460 which describes whether
application 420 is associated with an access permission
which allows the requested access. Based on information in
doorbell context information 450 and/or region permission
information 460, access engine 470 may perform the
requested access for application 420.

Registration of application 420 by host OS 410 may enable
application 420 to avail of application optimized access to
one or more regions of AAN storage device 430. The mapping
of user doorbell location 422 in the memory space of appli-
cation 420 to location 445 of AAN storage device 430 is
provided in an OS kernel bypass application programming
interface (API) for reading from and/or writing to region 485
of AAN storage device 430. Certain embodiments leverage
the native access control mechanisms of host OS 410 to
represent and maintain permissions on regions of storage
medium 480. However, due to registration of application 420,
access control information may be distributed for later use by
AAN storage device 430—the use independent of an OS
system call from application 420 to host OS 410 itself—at the
time access to the region 485 is actually requested by appli-
cation 420.

FIG. 5 illustrates select elements of a method for accessing
a storage medium according to an embodiment. Method 500
may be performed by any of a variety of application-opti-
mized object-based storage devices such as OSD 110. In an
embodiment, method 500 is performed by access engine 470.

Method 500 may include, at 510, detecting a write to a first
location of an OSD of a computer platform—e.g. the first
location serving as a doorbell address for signaling an OSD.
The write to the first location may be caused by an application
of the computer platform performing a write to a second
location in a memory space allocated to the application. The
application may perform the write to the second location in

US 9,268,712 B2

13

order to request a first information exchange—e.g. an appli-
cation optimized exchange between the memory space allo-
cated to the application and the OSD.

In an embodiment, the application has been registered for
access to a region of the OSD, the registration prior to the
OSD detecting of the write to the first location. Such regis-
tration may include, for example, the OSD storing informa-
tion associating the first location with the second location
and/or with a PDID of the application. For example, an ANL
of a host OS of the platform may have participated in an
exchange of registration information with the application and
the OSD, the exchange to allow access to the OSD by the
application which does not require the application to make a
system call to the native file system of the host OS.

The registration may include, or otherwise result in, a
memory mapping of the first location to the second location.
In an embodiment, such memory mapping is a basis for the
write to the first location being caused by the write to the
second location. The write to the first location may store an
identifier of a memory region of the OSD which, the host OS
previously provided to the application during the registration
process. The OSD may evaluate the memory region identifier
as part of a determination of whether to perform the access
requested by the application.

Method 500 may further include, at 520, performing the
first information exchange with the memory space, wherein
the first information exchange is independent of the applica-
tion sending to a host operating system of the computer plat-
form any system call which describes the first information
exchange. In an embodiment, the OSD determines an identi-
fier of the application in response to detecting the writing to
the first location. An access permission for the application
may then be identified based on the determined identifier,
wherein the first information exchange is granted (or denied)
based on the identified access permission.

In certain embodiments, the OSD may detect one or more
other requests for access which are independent of the host
OS. For example, the OSD may detect a write to some third
location of the OSD by a management agent of the computer
platform. The write to the third location may, for example, be
based on the management agent requesting a second infor-
mation exchange. In response to detecting the write to the
third location, the OSD may perform the second information
exchange to access a memory region of the OSD which is
invisible to the host OS. Such an exchange may, for example,
be to access BIOS instructions from the OSD.

FIG. 6 illustrates select elements of a method for accessing
a storage medium according to an embodiment. Method 600
may, for example, be performed by an application executing
on a computer platform which includes an application adap-
tive OSD. In an embodiment, method 600 is performed by an
application having some or all of the features of application
420. Method 600 may represent, for example, a reciprocal
method to that of method 500.

Method 600 may include, at 610, performing a write to a
first location in a memory space allocated to the application.
The writing to the first location may, for example, be per-
formed to request a first information exchange—e.g. an
exchange between the allocated memory space and the OSD.
In an embodiment, the write to the first location causes a write
to a second location of an OSD. In an embodiment, the first
memory location and second location of method 600 corre-
spond, respectively, to the second location and first location
of method 500.

In an embodiment, the application further registers for
access to a region of the OSD, the registration—e.g. prior to
the application performing the write to the first location. Such

10

15

20

25

30

35

40

45

50

55

60

65

14

registration may include, or otherwise result in, a memory
mapping of the first location to the second location. In an
embodiment, such memory mapping is a basis for the write to
the first location resulting in the write to the second location.

Method 600 may further include, at 620, performing the
first information exchange with the OSD based on the write to
the second location. In an embodiment, the first information
exchange is independent of the application sending to the host
OS any system call describing the first information exchange.

Techniques and architectures for accessing a storage
medium are described herein. In the above description, for
purposes of explanation, numerous specific details are set
forth in order to provide a thorough understanding of certain
embodiments. It will be apparent, however, to one skilled in
the art that certain embodiments can be practiced without
these specific details. In other instances, structures and
devices are shown in block diagram form in order to avoid
obscuring the description.

Reference in the specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment.

Some portions of the detailed description herein are pre-
sented in terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These
algorithmic descriptions and representations are the means
used by those skilled in the computing arts to most effectively
convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-
consistent sequence of steps leading to a desired result. The
steps are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities
take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared, and other-
wise manipulated. It has proven convenient at times, princi-
pally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers,
or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the discussion herein, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

Certain embodiments also relate to apparatus for perform-
ing the operations herein. This apparatus may be specially
constructed for the required purposes, or it may comprise a
general purpose computer selectively activated or reconfig-
ured by a computer program stored in the computer. Such a
computer program may be stored in a computer readable
storage medium, such as, but is not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs) such as dynamic RAM (DRAM),
EPROMs, EEPROMs, magnetic or optical cards, or any type

US 9,268,712 B2

15

of media suitable for storing electronic instructions, and
coupled to a computer system bus.
The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear from the description
herein. In addition, certain embodiments are not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of such embodiments
as described herein.
Besides what is described herein, various modifications
may be made to the disclosed embodiments and implemen-
tations thereof without departing from their scope. Therefore,
the illustrations and examples herein should be construed in
an illustrative, and not a restrictive sense. The scope of the
invention should be measured solely by reference to the
claims that follow.
What is claimed is:
1. A method at an object-based storage device (OSD) of a
computer platform, the method comprising:
detecting a write to a first location of the OSD caused by an
application of the computer platform performing a write
to a second location in a memory space of a memory
coupled to the OSD, the memory space allocated to the
application, the write to the second location to request a
first information exchange; and
performing the first information exchange with the
memory space, wherein the first information exchange is
independent of the application sending to a host operat-
ing system of the computer platform any system call
describing the first information exchange.
2. The method of claim 1, further comprising:
determining an identifier of the application in response to
detecting the writing to the first location; and

identifying an access permission for the application based
on the determined identifier, wherein the first informa-
tion exchange is based on the identified access permis-
sion.

3. The method of claim 1, wherein the write to the first
location stores an identifier of a memory region of the OSD
provided to the application by the host operating system in
response to a request from the application.

4. The method of claim 1, wherein the write to the first
location is caused by the write to the second location based on
amemory mapping of the first location to the second location.

5. The method of claim 1, wherein performing the first
information exchange includes accessing a first memory
region of the OSD, the method further comprising:

receiving from the host operating system a registration of

the application for access to the first memory region of
the OSD.

6. The method of claim 1, further comprising:

receiving a request to access a memory region of the OSD,

wherein the host operating system is to be prevented
access to information describing the memory region;

detecting an indication that a processor is operating in a

system management mode; and

based on the detecting the indication, accepting the request

to access the memory region of the OSD.

7. The method of claim 6, wherein the system management
mode is for operation of a BIOS management agent.

8. An object-based storage device for operation in a com-
puter platform, the object-based storage device comprising:

10

15

20

25

30

35

40

45

50

55

60

16

afirstlocation to receive a write caused by an application of
the computer platform performing a write to a second
location in a memory space of a memory coupled to the
object-based storage device, the memory space allo-
cated to the application, the write to the second location
to request a first information exchange; and

an access engine to detect the write to a first location, the

access engine further to perform the first information
exchange with the memory space, wherein the first
information exchange is independent of the application
sending to a host operating system of the computer plat-
form any system call describing the first information
exchange.

9. The object-based storage device of claim 8, wherein the
access engine further to determine an identifier of the appli-
cation in response to the write to the first location, and to
identify an access permission for the application based on the
determined identifier, wherein the first information exchange
is based on the identified access permission.

10. The object-based storage device of claim 8, wherein the
write to the first location stores an identifier of a memory
region of the OSD provided to the application by the host
operating system in response to a request from the applica-
tion.

11. The object-based storage device of claim 8, wherein the
write to the first location is caused by the write to the second
location based on a memory mapping of the first location to
the second location.

12. The object-based storage device of claim 8, wherein the
access engine to perform the first information exchange
includes the access engine to access a first memory region of
the OSD, the access engine further to receive from the host
operating system a registration of the application for access to
the first memory region of the OSD.

13. The object-based storage device of claim 8, the access
engine further to receive a request to access a memory region
of the ODS, wherein the host operating system is to be pre-
vented access to information describing the memory region,
to detect an indication that a processor is operating in a system
management mode, and based on the detecting the indication,
to accept the request to access the memory region of the OSD.

14. The object-based storage device of claim 13, wherein
the system management mode is for operation of a BIOS
management agent.

15. A method by an agent executing with a processing unit
of'a computer platform, the method comprising:

performing a write to a first location in a memory space

allocated to the agent, the write to the first location to
request a first information exchange between the
memory space of a memory device of the computer
platform and an object-based storage device (OSD) of
the computer platform coupled to the memory device,
wherein the write to the first location causes a write to a
second location of the OSD; and

based on the write to the second location, performing the

first information exchange with the OSD, wherein the
first information exchange is independent of the agent
sending to a host operating system of the computer plat-
form any system call describing the first information
exchange.

16. The method of claim 15, wherein the agent is an appli-
cation running in a user space supported by the host operating
system.

17. The method of claim 16, further comprising:

sending a request to the host operating system, wherein the

host operating system registers the agent with the ODS
in response to the system call; and

US 9,268,712 B2

17 18
receiving an identifier of a memory region of the OSD sending to a host operating system of the computer plat-
provided by the host operating system in response to the form any system call describing the first information
request, wherein the write to the second location stores exchange.
the identifier of the memory region. 21. The computer-readable storage medium of claim 20,
18. The method of claim 16, wherein the write to the 5 Wherein the agent is an application running in a user space
second location stores an identifier of the agent. supported by the host operating system.)
19. The method of claim 16, wherein the write to the first 22. The computer-readable storage medium of claim 21,

the method further comprising:
sending a request to the host operating system, wherein the
10 host operating system registers the agent with the ODS
in response to the system call; and
receiving an identifier of a memory region of the OSD
provided by the host operating system in response to the
request, wherein the write to the second location stores
15 the identifier of the memory region.
23. The computer-readable storage medium of claim 21,
wherein the write to the second location stores an identifier of

location is caused by the write to the second location based on
amemory mapping of the first location to the second location.
20. A non-transitory computer-readable storage medium
having stored thereon instructions which, when executed by
one or more processing units, cause an agent of a computer
platform to perform a method comprising:
performing a write to a first location in a memory space
allocated to the agent, the write to the first location to
request a first information exchange between the
memory space and an object-based storage device

: : the agent.
(OSD) of the computer platform, wherein the write to . .
the first location causes a write to a second location of 24. .The computer-readable storage medium of clalm 21,
the OSD: and 20 wherein the write to the first location is caused by the write to

the second location based on a memory mapping of the first

based on the write to the second location, performing the ; .
location to the second location.

first information exchange with the OSD, wherein the
first information exchange is independent of the agent ¥ % % % %

